e ee—

| @ python Lecture VI
Objects

» The OOP Concept

» Defining Classes

» Methods

* Instance, Class and Static Members

 Instance Variable

* Privacy

* |Inheritance

» Calling Parent Methods

) ——

&, pyth
Sk OOP

Although Python is a multi-paradigm language,
object oriented programming is a key
component of its model.

Everything is an object. Everything.

Objects are simply data structures that map
attribute names to values (also objects).

Unlike many other languages, Python does not
distinguish between data members and
methods much. A method is simply a data
member whose type is a bound function.

— e

&, python .
Defining Classes

» Classes are defined with the c1ass keyword,
which opens a new scope and creates a new
type. Base class(es) can be specified in the
definition after the name between brackets.

- class Vehicle:
- class Car(Vehicle):
- class Boat(Vehicle):

- class AmphibianCar(Car, Boat):

&, python
Class Scope

» Note that everything inside of a class block is
ordinary Python code.

* You can have variable assignments, if
statements, etc.

* The code In this case is evaluated during the
definition, not during the usage of a class.

o
& py

- Example:
- 1s_cat = True
my age = 10
class Pet:
if is cat:
def speak(self):
print "Meow!"
else:
def speak(self):
print "Roar!"
talk = speak
age = min(5, my_age)
my pet = Pet()

thon

Class Scope

print my_ pet.age

@, puth
S Methods

» Methods are defined in classes the same way
they are defined in the global scope, using the
def Keyword.

- class Vehicle:
def init_ (self):
self.fuel = 0

def move(self):
if self.fuel > 0O:
self.fuel -=1
print "I'm moving! I'm mooooviiiing!"

def refuel(self, fuel amount):
self.fuel += fuel amount

@, puth
S Methods

By default, when a method defined inside a
class is called on an instance of that class, the
instance is passed in the first parameter. The
two variants below are identical:

v = Vehicle()
v.move()

v = Vehicle()
Vehicle.move(v)

The convention is to name the first variable of
a class method se1f, though this is not
necessary and means nothing to Python itself.

.

&, python _
Special Methods

Python allows you to make your class better
integrated into the rest of the code by giving

you control of methods called on it by Python
itself in special cases.

Special methods all start and end with two
underscores.

The best known special method is the
constructor, called __init__ .

Other special methods exist to overload
operators, facilitate iteration, etc.

&, python
Instance Methods

By default, methods defined in classes are
bound to the class's instances. They are called
from instances and receive these instances in

their first parameters.

When you assign an instance method to a
variable, its parent instance is "bound" to it.

Example:

v = Vehicle()

X = vV.move

y = Vehicle.move

x() — Calls Vehicle.move(v)

y() — Error! Not enough parameters!

&, python
Class Methods

In some cases you may want to create method
that take the class object itself rather than the
instance object as their first parameter. This is
done using the @ciassmethod decorator:

class Animal:
def whoAmI(self):
print self

@classmethod
def whatAmI(self):
print self
a = Animal()
a.whoAmI()
a.whatAmI()

—— e — —

&, python |
Static Methods

Sometimes you want to define a method in a
class that is treated like a normal function and
IS not passed any special parameters. This is
done using the @staticmethod decorator:

class Animal:
def speak(self):
print '%s says: Hello!' % self

@staticmethod
def say(self):
print self
a = Animal()
a.speak() — Calls Animal.speak(a)
a.say() — Error! Not enough

parameters!

—————

&, python |
Instance Variables

* A method called from an instance can access
the instance's variables only through its first
parameter (e.g. seir). This includes both data
attributes and other methods.

- class Animal:
def init_ (self, my _name):
self.name = my_ name

def speak(self):
self.say(self.name)

def say(self):
print self

&, python |
Privacy

As we have mentioned previously, Python
does not have real privacy.

There are conventions that specify that
variable starting with a single underscore are
private and two underscores as name-
mangled.

This applies to class methods and data
attributes the same way it applies to modules.

&, python

Python's
that of ot
allows In

Inheritance

inheritance model is very similar to
ner OOP languages, but like C++ it
neriting from multiple base classes.

A child c

ass inherits its parents' attributes, be

they data members or methods.

Classes can have no parents, but in such case

it is sugg
Parent cl

ested that they inherit from object.
asses do not need to be defined in

the same scope or file - any expression that

returns a

class object will do.

S — e

(&, python |
Inheritance

- Example:

- class Animal:
def init_ (self, my name):
self.name = my_ name

class Cat(Animal):
def speak(self):
print '%s says: Meow!' % self.name

class Dog(Animal):
def speak(self):
print '%s says: Rruff!' % self.name

&, python |
Inheritance

* Example:

- class A: h
X = 'Hello'

class B:
z = 'Goodbye’

class Combined(A, B):
y = "Wow!'

c = Combined()
print c.X
print c.y
print c.z

&, python o
Method Overriding

Python methods are always overridden by
child classes. For those coming from C++, we
can say that all Python methods are "virtual”.

When a base class calls a method that has
been overridden in by a child class *on an

instance of the child class™, the overridden
method is called.

[&, python o
Method Overriding

- Example:

- class Parent:
def greet(self):
self.say('Hello"')

def say(self, what):
print 'Parent says:', what

class Child(Parent):
| def say(self, what):
print 'Child says:', what

p = Parent()

c = Child()

p.greet() — prints "Parent says: Hello"
c.greet() — prints "Child says: Hello"

) NS, S

&, python _
Calling Base Methods

Child classes can call methods of their parents
even Iif they override these methods.

This is done by calling the "unbound" version
of the method and manually passing the
current instance (self) as the first parameter:

class Parent:
def greet(self):
print 'Hello'

class Child(Parent):
def greet(self):
Parent.greet(self)
print 'How are you?'

—— e —

