

Lecture IV
Files and Exceptions

● Files
– File-like Objects
– Opening, Reading, Writing and Seeking
– Encoding Issues: Binary and Text

● Exceptions
– Concept
– Catching
– Raising

Files-like Objects

● File access in Python is modeled after C++.
● Files are accessed through "file-like objects",

which are very similar to streams in C++.
● Streams may be also used to access other

resources, such as string buffers or network
sockets.

● Due to Python's dynamic typing, most
applications do not care what a stream is
accessing.

Opening Files

● Opening a file in Python means creating a file
object using the open() or file() functions.

● Examples:
– f1 = open('C:/Music/Playlists/favourite.m3u')

f3 = open('my_script.py', 'w')

f2 = open('todo_list.txt', 'r')

f4 = open('../../index.htm', 'a')

f5 = file('downloads/book.txt', 'r+')

● Files are closed when a file object goes out of
scope, but can also be closed manually.

Reading Files

● File-like objects have several functions for
reading data:

– f1 = open('C:/Music/Playlists/favourite.m3u')

print f.read()
– f1 = open('C:/Music/Playlists/favourite.m3u')

print f.read(10)
– f1 = open('C:/Music/Playlists/favourite.m3u')

print f.readlines()
– f1 = open('C:/Music/Playlists/favourite.m3u')

print f.readline()

Iterating over Files

● One can iterate over the lines of a file-like
objects in a for loop:

– f = open('C:/Music/Playlists/favourite.m3u')

i = 0

for line in f:

print '%-4d %s' % (i, line)

i += 1

Writing to Files

● Writing to files is similar to reading and is done
using the write() and writelines() function of the
file object, or by using a print statement:

– f = open('C:/Music/Playlists/favourite.m3u', 'w')

f.write('Evanescence - My Immortal.mp3\n')

f.writelines(['Deep Purple - Soldier of
Fortune.mp3',

 'Orthodox Celts – Fields of Athenry',

 'Jonathan Coulton – Still Alive'])
print >>f, 'Ralph McTell - Streets of London'

Seeking Files

● When reading files, one sometimes wants to
skip to a particular point in the file. This can be
done using the seek() function:

– f = open('C:/Music/Playlists/favourite.m3u')

print f.seek(5)

print f.read(10)

print f.seek(5)

print f.read(10)

print f.seek(5, 1)

print f.read(10)

Exceptions

● Exceptions are a mechanism for handling
exceptional occurrences, usually errors.

● When an error or exceptional situation occurs,
an exception is "thrown" or "raised".

● When a piece of code might produce an error,
it should be surrounded by a "try" block. If no
errors occur, nothing happens. However, if an
error does occur, the programmer can "catch"
it and specify what to do about it.

● An uncaught exception results in a crash.

Catching Exceptions

● All errors in Python and its libraries result in
thrown exceptions, so it is extremely important
for a coder to know how to catch them, more
so than knowing how to throw or raise them.

● Catching is done using a try block. The error-
prone code goes in the try part and the error-
handling code goes into the except block.

● An except block can either catch any
exception, or a particular type, such as a
divide-by-zero, or a missing-file error.

Catching Exceptions

● Examples:
– try:

 f = open('a_file_that_might_not_exist.txt')

 print f.read()

except:

 print 'Could not open file!'

print 'Execution continued.'

Catching Exceptions

● Examples:
– try:

 f = open('a_file_that_might_not_exist.txt')

 print f.read()

except IOError:

 print 'Could not open file!'

print 'Execution continued.'

Catching Exceptions

● Examples:
– try:

 f = open('a_file_that_might_not_exist.txt')

 print f.read()

except IOError, e:

 print e

print 'Execution continued.'

Catching Exceptions

● Examples:
– try:

 f = open('a_file_that_might_not_exist.txt')

except IOError, e:

 print e

else:

 print f.read()

print 'Execution continued.'

Catching Exceptions

● Examples:
– try:

 x = 5

 y = 0

 z = x / y

except IOError, e:

 print e

Catching Exceptions

● Examples:
– try:

 x = 5

 y = 0

 z = x / y

except IOError, e:

 print 'IO:', e

except ZeroDivisionError, e:

 print 'Zero:', e

except:

 print 'Some other error:', e

Catching Exceptions

● Examples:
– f = open('output.txt', 'w')

try:

 s = f.read()

 x = some_function(s)

except Exception, e:

 print e

finally:

 f.close()

 print 'File closed.'

Catching Exceptions

● When an exception is thrown but not caught, it
will "propagate up the call stack", or in other
words, it will look for a try block in the function
that called the current one, then the one that
called that one, and so on.

Catching Exceptions

● Example:
– def f():

x = 5 / 0
def g():

f()
def h():

try:
g()

except IOError:
print 'IO Error!'

def j():
try:

h()
except Exception, e:

print 'Unknown Error:', e
j()

Catching Exceptions

● Example:
– def f():

open('hello.txt')
def g():

f()
def h():

try:
g()

except IOError:
print 'IO Error!'

def j():
try:

h()
except Exception, e:

print 'Unknown Error:', e
j()

Raising Exceptions

● When writing larger scripts or libraries, one
often wants to raise their own exceptions. This
is done using the raise keyword. Example:

– def square_root(x):

 if x < 0:

 raise Exception('No square roots for
negatives.')

 import math

 return math.sqrt(x)

